小学奥数数论问题:余数问题

时间:2024-07-16 22:55:24
小学奥数数论问题:余数问题

小学奥数数论问题:余数问题

余数有(N-1)个,最小的是1,最大的是(N-1)。周期性变化时,不要看商,只要看余。小编整理了相关的内容,欢迎欣赏与借鉴。

一、数论

1.奇偶性问题

奇+奇=偶奇×奇=奇

奇+偶=奇奇×偶=偶

偶+偶=偶偶×偶=偶

2.位值原则

形如:abc=100a+10b+c

3.数的整除特征:

整除数特征

2末尾是0、2、4、6、8

3各数位上数字的和是3的倍数

5末尾是0或5

9各数位上数字的和是9的倍数

11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

4和25末两位数是4(或25)的倍数

8和125末三位数是8(或125)的倍数

7、11、13末三位数与前几位数的差是7(或11或13)的倍数

4.整除性质

①如果c|a、c|b,那么c|(ab)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.

⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的.余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

6.唯一分解定理

任何一个大于1的自然数n都可以写成质数的连乘积,即

n=p1×p2×...×pk

7.约数个数与约数和定理

设自然数n的质因子分解式如n=p1×p2×...×pk那么:

n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)

n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+Pk+Pk+…pk)

8.同余定理

①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)

②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。

⑤两数的积除以m的余数等于这两个数分别除以m的余数积。

9.完全平方数性质

①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。

④平方和。

10.孙子定理(中国剩余定理)

11.辗转相除法

12.数论解题的常用方法:

枚举、归纳、反证、构造、配对、估计

《小学奥数数论问题:余数问题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式